
Project Description

Most data in cold-atom experiments comes from images, the analysis of which is limited by our preconcep-
tions of the patterns that could be present in the data. In this project, we focus on the well-defined case of
detecting dark solitons—appearing as local density depletions in a Bose-Einstein condensates (BECs)—using
a methodology that is extensible to the general task of pattern recognition in images of cold atoms. Study-
ing soliton dynamics over a wide range of parameters requires the analysis of large datasets, making the
existing human-inspection-based methodology a significant bottleneck. To enable machine learning analysis,
we established a dataset of over 6 000 labeled experimental images of BECs with and without dark solitonic
excitations.

If you use this dataset, please cite our paper:
Shangjie Guo, Amilson R. Fritsch, Craig Greenberg, I. B. Spielman, and Justyna P. Zwolak, “Machine-
learning enhanced dark soliton detection in Bose-Einstein condensates”, arXiv:2101.05404.

Dark solitons in BECs dataset

This dataset consists 6 257 absorption images with human assigned labels. These images were taken from
multiple experiments performed in a single lab over a span of two months. Each record of atomic density in
the dataset was obtained by combining three raw images:

• the probe with the BEC’s shadow IAi,j (see Fig. 1(a)),

• the probe intensity IPi,j (see Fig. 1(b)),

• a dark frame containing any ambient background signal IBG
i,j (see Fig. 1(c)).

The raw images (Fig. 1(a-c)) were obtained with a 648 × 488 pixel camera (Point Grey FL3) with 5.6 µm
square pixels, labeled by i and j. Including the ≈ 6× magnification, each pixel has effective size of 0.93 µm.
The diffraction limit of the imaging system gives an optical resolution of ≈ 2.8 µm (roughly three pixels).

The three raw images are combined to produce the 2D density using to the following relation:

σ0ni,j ≈ − ln

[
IAi,j − IBG

i,j

IPi,j − IBG
i,j

]
, (1)

where the resonant cross-section σ0 = 3λ2/(2π) is derived from the wavelength λ of the probe laser. The
dimensionless product σ0ni,j is of order 1 in our data, so we express density in terms of this product.
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Figure 1: Sample data. (a-c) Raw absorption images: (a) atom IA, (b) probe IP, and (c) background IBG.
(d-f) Pre-processed images that labeled as (d) no soliton, (e) single soliton, and (f) other excitations.
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As can be seen in (Fig. 1(a), the BEC occupies only a small region of the image, and the long axis of
the BEC is rotated with respect to the camera. Therefore, the 2D absorption images images are rotated to
align the BEC with the image frame and cropped to discard the large fraction of the image that does not
contain information about the BEC. Since the BEC’s position and shape can vary for different realizations
of the same experiment, we implement a fitting approach to determine the position and size of the BEC.

We fit every image to a column-integrated 3D Thomas-Fermi distribution describing the density distri-
bution of 3D BECs integrated along the imaging axis:

nTF
i,j = n0 max

{[
1 −

(
i− i0
Ri

)2

−
(
j − j0
Rj

)2
]
, 0

}3/2

+ δn. (2)

We use six parameters to fit: the BEC center coordinates [i0, j0]; the peak 2D density n0; the Thomas-Fermi
radii [Ri, Rj ]; and a offset δn from small changes in probe intensity between images.

We determined the 164 × 132 pixel extent of the cropping region by examining the radii [Ri, Rj ] =
[66(5), 58(3)] obtained from fits to images included in this dataset. We then centered the cropping region
at [i0, j0] as determined from fits of each image separately. The process was validated on an additional 104

images not included in the dataset. Finally, an elliptical mask with radii [Ri,Rj] was applied to each image,
eliminating all technical noise outside the BEC. In the resulting images dark solitons appear as vertically
aligned density depletions and are easily visually identified (Fig. 1(d)).

Three human labelers labeled the preprocessed data, categorizing the images into three classes as: 0
(no soliton), 1 (single soliton), and 2 (other excitations). The “no soliton” class contains images that
unambiguously contains no solitons; the “single soliton” class describes images with one and only one soliton;
and “other excitations” class covers any image that can neither be interpreted as “no soliton” nor “single
soliton.” Three human labelers first label the images individually, then label the disagreed images by
discussing with each other.

Data structure

Each absorption image in the dataset is stored as a dictionary in a separate NumPy file. The dictionary
contains two elements (keys):

• ‘data’ : the preprocessed absorption image [(132, 164) numpy.array],

• ‘label’: human assigned labels: 0, 1, or 2; [int],

where the type of each element in the dictionary is given in the brackets.
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